Avoiding Approximate Squares
نویسندگان
چکیده
As is well-known, Axel Thue constructed an infinite word over a 3-letter alphabet that contains no squares, that is, no nonempty subwords of the form xx. In this paper we consider a variation on this problem, where we try to avoid approximate squares, that is, subwords of the form xx where |x| = |x| and x and x are “nearly” identical.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملAvoiding large squares in infinite binary words
We consider three aspects of avoiding large squares in infinite binary words. First, we construct an infinite binary word avoiding both cubes xxx and squares yy with |y| ≥ 4; our construction is somewhat simpler than the original construction of Dekking. Second, we construct an infinite binary word avoiding all squares except 0, 1, and (01); our construction is somewhat simpler than the origina...
متن کاملOn Avoiding Sufficiently Long Abelian Squares
A finite word w is an abelian square if w = xx′ with x′ a permutation of x. In 1972, Entringer, Jackson, and Schatz proved that every binary word of length k2+6k contains an abelian square of length ≥ 2k. We use Cartesian lattice paths to characterize abelian squares in binary sequences, and construct a binary word of length q(q + 1) avoiding abelian squares of length ≥ 2 √ 2q(q + 1) or greater...
متن کاملRegularized Least Squares Temporal Difference Learning with Nested ℓ2 and ℓ1 Penalization
The construction of a suitable set of features to approximate value functions is a central problem in reinforcement learning (RL). A popular approach to this problem is to use high-dimensional feature spaces together with least-squares temporal difference learning (LSTD). Although this combination allows for very accurate approximations, it often exhibits poor prediction performance because of ...
متن کاملCubefree binary words avoiding long squares
Entringer, Jackson, and Schatz conjectured in 1974 that every infinite cubefree binary word contains arbitrarily long squares. In this paper we show this conjecture is false: there exist infinite cubefree binary words avoiding all squares xx with |x| ≥ 4, and the number 4 is best possible. However, the Entringer-Jackson-Schatz conjecture is true if “cubefree” is replaced with “overlap-free”.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 19 شماره
صفحات -
تاریخ انتشار 2007